Computer Networks 257 (2025) 110932

Contents lists available at ScienceDirect
ter
rks
Computer Networks -
journal homepage: www.elsevier.com/locate/comnet
- . . . Check for
Cooperation-based server deployment strategy in mobile edge computing
system
Xin Li®*, Meiyan Teng?, Yanling Bu?, Jianjun Qiu?, Xiaolin Qin?, Jie Wu®
2 CCST, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
b Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA
ARTICLE INFO ABSTRACT
Keywords: In our exploration of Mobile Edge Computing (MEC) systems, we address the critical challenge of edge
Cooperation server deployment, aiming to enhance application responsiveness through optimized server placement and

Edge server deployment
Mobile edge computing
Utility optimization

cooperation. Our study diverges from traditional approaches that prioritize server location, instead highlighting
the untapped potential of server collaboration for sharing computing resources. This cooperative strategy not
only boosts resource utilization and trims response times but also intricately complicates deployment strategies.
We introduce an innovative Collaboration-Based Server Deployment (CBSD) algorithm that stands out by
facilitating cooperative communication between edge servers via Base Stations (BSs), even under stringent
resource constraints. This algorithm employs a dual-phase approach: initially utilizing a non-collaborative
Gradient algorithm for resource allocation among cooperative regions, followed by a strategic distribution
of resources based on regional demand. Our comprehensive simulations show that our proposed methodology
improves system utility and throughput by 35% and 25%, respectively, while robustness reaches 90% compared
to the baseline. These results represent improvement in managing limited edge resources effectively.

1. Introduction exemplifying the collaborative relationship between servers. However,
load distribution varies across different regions [10,11], for example,

With the rapid development of mobile network technology and the residential and office regions experience distinct loads. Additionally,
Internet of Things (IoT), more and more low-latency application scenar- load distribution is time-dependent, with residential areas witnessing

ios need to be considered. Cloud Computing (CC) has begun to shift to different loads during day and night. Consequently, the number of
Mobile Edge Computing (MEC) [1] that sinks the computing power to requests in each region is both different and dynamic, reflecting the
the distributed edge servers closer to the user to improve the real-time changing load distribution caused by user mobility [12]. A larger load,

performance [2], reduce the energy consumption [3], enhance security indicative of more requests in a region, requires a successful response
privacy protection, and pursue the quality of services (QoS) [4]. It

expresses that small-scale and decentralized server deployment could
improve the system utility [5]. However, deploying numerous edge
servers everywhere is infeasible due to constraints on resources and
costs. Therefore, factors such as the deployment location, number, and
computing power of servers significantly impact the system utility and,
by extension, the QoS [6]. Consequently, it is essential to explore server
deployment strategies to improve MEC system performance, particu-
larly focusing on optimizing the number of servers and the distribution
of their resources.

In the MEC system depicted in Fig. 1, edge servers are typically
located at base stations (BSs), each covering a distinct region. Inter-
base station communication interfaces, as discussed in [7], facilitate
communication and computing collaboration between servers [8,9].
This architecture enables servers to forward requests to other regions, unevenly distributed, which leads to the server deployment strategy

that depends on the substantial computing resources of the server [10].
Therefore, to execute all requests and enhance the QoS, we investigate
the cooperation-based server deployment problem to determine the
computing resources allocated to each server in every region.
However, the cooperation-based server deployment problem faces
multiple challenges in the MEC system. First, we must know the con-
nectivity and network transmission quality between servers, and the
server collaboration enables migrating services to other connectable
servers for execution, which increases the complexity of solving the
server deployment problem. Another, forward requests will increase
the response time, so it must limit the number of hops for service
request cooperation because each hop will incur additional response
delay. Next, the movement of users causes the load of servers to be

* Corresponding author.
E-mail address: lics@nuaa.edu.cn (X. Li).

https://doi.org/10.1016/j.comnet.2024.110932

Received 29 July 2024; Received in revised form 6 November 2024; Accepted 16 November 2024

Available online 24 November 2024

1389-1286/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:lics@nuaa.edu.cn
https://doi.org/10.1016/j.comnet.2024.110932
https://doi.org/10.1016/j.comnet.2024.110932
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110932&domain=pdf

X. Liet al

== S‘A”Z\ =

A
8 gﬁ + ™\
PaiE] L TR 7

Hospital Region

:::S‘L&)*
. g

School Region

Computer Networks 257 (2025) 110932

Business Region

Fig. 1. The Mobile Edge Computing System.

being dynamically adjusted to adapt to the varied load. Finally, the
delay tolerance and the resource demand of tasks requested by users
are diverse and the deployment cost is limited, which also increases the
difficulty of making server deployment decisions. Nowadays, a lot of
leading research about edge computing focuses on computation offload-
ing [13,14], service placement [15], service migration [16,17], Edge
Intelligence (EI) [18,19], etc. These studies focus on the application
level, whereas server deployment addresses server configuration issues.
Consequently, these research efforts assume that edge servers are al-
ready in place. A sound server deployment strategy not only ensures
the optimal operating environment for services but also underscores
the fundamental value of our study to the field.

Regarding the server deployment problem, most works are aiming
to minimize the cost [20,21], the network resource [22,23], task time
and energy consumption [24], and achieve load balance [25], etc [26].
Apart from those, we defined a system utility related to resource
utilization and delay time, where the resource refers to a resource block
consisting of network resources and computing resources. The server
deployment in work [20] mainly determines the number and location
of services, while other works [21,26] only determine the location of
servers. However, these works ignore the amount of resources allocated
to servers is an important factor that affects the quality of service.
Other works [22,27,28] consider resource utilization but are limited
to network resources, ignoring that computing resources are also an
important factor affecting server deployment. Different from the above
works, the server deployment we study focuses on solving computing
resource deployment strategy under server collaboration conditions.
Additionally, existing studies [25,28] solve server deployment prob-
lems based on load, and the work [28] increases dynamically the
network resources, but they forget the feature that the regional load
periodically changes.

In this paper, we first establish a server collaboration mechanism
that considers for the dynamic changes in regional load and server
locations, facilitating the assessment of server collaboration feasibility.
Subsequently, we examine the periodic variation of load and leverage
server collaboration to achieve complementary load change patterns
and resource sharing among different servers, which improves the
resource utilization of servers. Therefore, we proposed a Cooperation-
based Edge Server Deployment Strategy (CBSD) to maximize the sys-
tem utility under the limited cost constraint. In summary, the main
contributions can be summarized as follows:

(1) We give a detailed description of the features of regional load
periodic variation in a mobile edge computing system and exploit
the load complementarity of different regions to discover server

collaboration technology. Then, we quantify some of the system
parameters, define an optimization objective for measuring the
effectiveness of the deployment strategy and formulate the server
deployment problem. Finally, we define a system utility based on
the task types including delay-sensitive and delay-tolerant tasks.
(2) In order to avoid task execution failures or long delays caused by
server-collaborative ~ computing, we propose a server-
collaboration judgment mechanism. On one hand, we base it on
the system characteristics, task attributes, and cost constraints
to set the cooperative conditions of servers. On the other hand,
we stipulate a collaborative response mode for tasks to further
measure the system utility.
To solve the collaboration server deployment problems, we use
the flower tree algorithm to bind the collaborative servers, which
is converted to a non-collaborative server deployment problem
and solved by the Gradient algorithm we proposed. For the
resource allocation problem among collaborative servers, we
present a collaboration-based server deployment (CBSD) algo-
rithm to allocate computing resources based on load proportion.

@3

=

(4) We perform extensive simulation experiments to verify the perfor-
mance of the CBSD algorithm in terms of system utility, through-
put, and robustness under different system settings. The results
show that our algorithms have excellent performance in improv-
ing the system utility, can successfully accept a larger number of
tasks in terms of throughput, and have a higher robustness.

The remainder of this article is organized as follows. We overview
the related works on server deployment in Section 2, and introduce
the MEC system and formulate the server deployment problem in
Section 3. Section 4 presents the cooperation way of servers, including
the cooperative conditions of servers and a collaborative response mode
for tasks. Section 5 proposes the CBSD algorithm and the Gradient
algorithm to solve the collaboration server deployment problems. In
Section 6, we validate our algorithms by analyzing the experimental
results. Finally, Section 7 summarizes all works of our paper.

2. Related works

Edge computing can essentially solve the problems in the traditional
cloud computing process [29], but different edge server deployment
schemes will have a more significant impact on system utility. To
obtain an optimal system utility, many scholars have conducted in-
depth research on server deployment using mathematical models and
optimization algorithms to optimize solutions from multiple aspects.



X. Liet al

Since server providers require a lot of cost to deploy servers, most
researchers studied server deployment problem with the goal of min-
imizing the cost. The authors [20] used queuing theory and vector
quantization(VQ) technique to proposed an optimal edge servers de-
ployment strategy to optimize the number and the location of servers
and the users allocation, which minimizes the cost of services provider
and guarantees the completion time of all services requests. Similarly,
the literature [21] also aims at minimizing costs, which uses stochastic
games to solve multi-user computation offloading and edge server
deployment respectively. Beside, there are also some studies [22,23]
on the deployment of edge servers from the perspective of network
resource optimization to improve the utilization of network resources.
These algorithms utilized the relaxation constraints idea to solve the
optimal server deployment strategy and used the genetic search algo-
rithm to determine the optimal deployment location of nodes. Finally,
they took advantage of the Lagrangian operator to solve the best service
node set.

Apart from the above objectives, the authors in [24] defined a
task experience function as an evaluation index from two aspects: task
time and energy overhead. And the literature [25] minimized the dis-
tances between servers, while taking into account capacity constraints
for load balancing and enabling workload sharing between servers.
Finally, the literature [26] formulated the six-objective server deploy-
ment optimization model and proposed a many-objective evolutionary
algorithm to optimize the transmission delay, workload balancing,
energy consumption, deployment costs, network reliability, and server
quantity.

However, the existing technical solutions have a shortcoming,
where they do not take into account the cycle difference of the regional
load. They ignore the load variation pattern among different regions
may be complementary, leading to the increase in the number of edge
servers deployed. In our previous work [30], we have discussed the
server deployment based on load gradient changes. However, it had
no consideration for server cooperation. In this paper, we take the
server cooperation into account since the BSs can communicate through
interfaces. We define the cooperation conditions based on the delay
requirements of the service and the network conditions. In scenarios
that do not meet the requirements of collaboration, we analyze the load
variation rule in the edge area to obtain the relationship between the
utility gradient and the load variation, and propose a gradient-aware
server deployment strategy. But in the collaboration scenario, we take
advantage of greedy thinking to propose a collaboration-based server
deployment strategy.

3. System model and problem formulation
3.1. The system model

Fig. 2 shows a mobile edge computing (MEC) system with edge
server collaboration, where the edge servers can be deployed near the
BSs and they can connect to each other through interfaces in the Radio
Access Network (RAN). Under normal circumstances, the requests of
User Equipment (UE) can only be responded to by the local edge
server, such as request 1 only be responded to by local server 1 in
Fig. 2. However, server 1 and server 2 can communicate with each
other, so server 1 can forward the request 1 to server 2 to respond,
which achieves collaboration between server 1 and server 2. Similarly,
server 2 and service 3 can also cooperate to respond to request 2.
Therefore, the servers can communicate with each other to realize
data transmission, and then support server collaborative computing and
service migration.

The MEC system can adopt diversified deployment methods based
on actual conditions, which produces different utility and brings chal-
lenges to the study of edge servers deployment. The requests can
be directly executed on the local edge server to reduce delay and
meet the real-time requirements of delay-sensitive tasks. At the same

Computer Networks 257 (2025) 110932

Table 1
Summary of key symbol.

Symbol Description

M The region set

m A region m, me M

L The load set

1, The load of region m, /,, € L

A The computing power matrix

Ao The computing power allocated to region m
N A cycle is divided into N stages

J The task set

Y; The characteristics of task j

j Atask j, jel

& The identification of the task j

H The utility from the execution of task j
m; The region where the task j belongs to
7; The completion time deadline of task j
0; The actual execution time of task j

k The category of task j

J
n;(0;) The utility function of task j

The coefficient of delay-sensitive tasks
The coefficient of delay-tolerant tasks
The total utility in a cycle
The total computing power

R

s o8

time, the requests can be transmitted to the other edge servers. Server
collaborative computing will generate additional time overhead, which
will affect the task response quality. In addition, the limited computing
power of edge servers is an important factor affecting the task response,
and further influences the system utility. In order to evaluate the
influence of edge server computing power allocation on the system,
we defined utility variables. Next, we will give descriptions of regions,
tasks, and utility functions based on system parameters (see Table 1).

3.2. System parameters

Region Description: In order to reflect the law of load changes, this
paper divides the entire MEC system into multiple regions. An region
may contain multiple BSs, and the load changes in these regions are
different. However, the load variation in a short period of time may
not be obvious. The purpose of the period division is also to reflect
the periodic changes of the load. The characteristics of regions are
described by a tuple A, as follows:

A=<ML,1> (€9)

where, M is the region set and M is the number of regions, m € M is
the unique identifier of the region m, and /,, € L represents the load in
the current region m. The 4 is the matrix of computing power allocated
to each regions, where 4,, is the computing power allocated to region
m. In order to characterize the cyclical variation of the load, a day is
regarded as a cycle, which matches the real life scenarios. A cycle is
divided into N stages. For example, a day can be divided into 4 stages,
and every 6 h constitutes a stage.

Tasks Description: We divide all tasks into two categories based on
real-time requirements: delay-sensitive tasks and delay-tolerant tasks.
For delay-sensitive tasks, if the response time does not meet their
real-time requirements, it will reduce the quality of the task. So the
delay-sensitive tasks need to be executed in edge servers preferentially.
But for delay-tolerant tasks, a longer delay has little effect on their
quality. In many cases, it is also possible to place them in the cloud data
center. This means that delay-sensitive tasks have a higher execution
priority than delay-tolerant tasks, especially when the edge server load
is high. For example, when the load of the edge server reaches a preset
threshold, the edge server must refuse to perform delay-tolerant tasks
and reserve computing resources for delay-sensitive tasks to ensure
their quality of service. In this paper, the tasks set is denoted by J,
and the characteristics of a task j € J are expressed as:

Yj:< §j,/4/-,mj,1j,9j,kj> 2



X. Liet al

Internet

Regionl '/ . "' e
y--
= () (@)
se.rv_er 1 1

QUE QUE QUE DUE

—>Request 2

Computer Networks 257 (2025) 110932

} Region2 Region3

(E0)

)
BS: server 3

QUE \hus QUE

»Forward Request 2

server 2

QUE

Fig. 2. An edge server collaboration system.

—Requestl ------ »-Forward Request 1
1) (wtility)
p |
|
|
|
|
l
0 I time(0)
< >

(a) the delay-sensitive tasks

A (utility)

l‘l’ |
|
|

wh--------- o—
! I

0 | : time(0)
- 2:7' 3T T

o— ¢

(b) the delay-tolerant tasks

Fig. 3. The utility function of different kinds of tasks.

where, the &; is used as the identification of the task j, and y; represents
the utility from the successful execution of the task j. The region where
the task j belongs to is marked as m; € M, the completion time deadline
of the task j is 7;, and the actual execution time of the task j is 6;. The
symbol k; € {0, 1} is the category of task j, where k; = 1 means the j
is a delay-sensitive task and k; = 0 represents the ;j is a delay-tolerant
task.

The Utility Function: The objective of our research is to maximize
the system utility under the premise of ensuring the quality of all tasks
through reasonable edge server deployment. Because the completion
time required by different tasks is different, and the actual execution
time of all tasks is also different. In addition, the actual execution time
of different types of tasks also has a different impact on the system
utility. So we construct a utility function, as shown in Fig. 3, which
describes the effect of the completion time of delay-sensitive tasks and
delay-tolerant tasks on the system benefit. From Fig. 3, we find that
tasks with different types have different completion utilities and the
same tasks with different completion times also get different utilities.
In this paper, we suppose that when the server load reaches the preset
threshold, the delay-tolerant task must be rejected to ensure the delay
requirement of the delay-sensitive task. That is, when the load of the
edge server reaches a certain percentage, the delay-sensitive tasks can
preferentially occupy edge computing resources.

For delay-sensitive tasks that respond before the completion time
of the task deadline, the system can get the full utility. However, if the
execution time exceeds the deadline, which means that the real-time
requirements cannot be met, the utility will directly become negative.
And the longer the time exceeded, the worse the service quality be-
comes. The equation of utility function for the delay-sensitive tasks is
defined in Eq. (3) as shown in Fig. 3(a), where 7 is the completion time
required by the task j, 6; is the actual execution time of task j, and «

is the attenuation coefficient of the utility function when the deadline
is exceeded.

n,-(e,-):{ i

—a(0; — 1)),

For delay-tolerant tasks, they usually have periodic characteristics.
When the required completion time is exceeded, the utility decreases
periodically, as shown in Fig. 3(b). Therefore, the utility function of
the delay-tolerant task can be expressed as Eq. (4), which is a piecewise
function. And the w is the attenuation coefficient of utility for the delay-
tolerant tasks, which is w is less than the 1 ;- So, when the actual
execution time 0; € (2;,37;], the utility will be negative.

6,
"Ij(ej) =H; - (llj - ) [;J
J

0, <7;

otherwise

3

4

3.3. The problem formulation and analysis

The purpose of our research is to obtain a reasonable server deploy-
ment strategy to maximize the execution utility of the system, under
limited computing resources. From Egs. (3)-(4), the utility of a task is
related to the execution time of this task, which is determined by the
computational power of the server, i.e., §; — A. The utility function
n;(0;) of task j is rewritten as n;(4). For a stage, the total utility is the
accumulation of the utility of all tasks is defined as

M J
ha() =" Y n,()

m=1 j=1

)

Our research aims to maximize the utility of a cycle, where a cycle
is divided into N stages, as shown in Eq. (6). Assume that the total
computing power of the system initially owned is @, and the computing



X. Liet al

power allocated to the M regions in turn is A = 4, 4,, ..., 4),. The sum
of computing power allocated to each region cannot exceed the total
computing power. So the object and constraint of server deployment
problem can be expressed as:

N
max Q2 = Z h,(4) (6)

n=1

st A +Ah+ o+ iy LD @)

Through the extension and analysis of the above formulas, we show
and prove that the resource allocation problem of the edge server is
NP-hard.

Theorem 1. In the MEC system, the resource allocation problem of edge
servers is NP-hard.

Proof. The MEC system is as described above. Under the constraint that
the total computing resource is @, appropriate computing resources are
allocated to M sub-regions, which can be decomposed into a knapsack
problem.

For the knapsack problem, a set of items UB;(1 < i < k) is given,
where the weight w; corresponds to the value v;. The next step is to
select items in the knapsack to maximize the total value under the
premise that the total weight does not exceed I1. In the scenario of this
article, we first construct a set of regions UA, (1 < k < M), IT = ®, and
its value changes with the computing resources allocated to each re-
gion, which can be expressed as #(Y;). At the same time, the goal of the
research is to maximize the overall utility under different deployment
strategies. Finally, let #(Y;) be a constant, and the problem presented in
this paper is completely equivalent to the ordinary knapsack problem.
The knapsack problem is NP-hard, so the resource allocation problem
of edge servers in the MEC system is also NP-hard.

4. The server cooperative mode

In the MEC system, the servers can communicate with each other
through interfaces of BSs, which achieve the server cooperation to
response task. However, servers must be able to collaborate for task
computing under certain conditions, which are influenced by many
factors. What is more, the task collaborative response mode is an impor-
tant factor in the server deployment strategy, and further influence the
system utility. In order to get a reasonable server deployment strategy,
this section first discusses the necessary conditions for server coopera-
tion and the task collaborative response mode, laying a foundation for
the following deployment strategy design.

4.1. The conditions for server cooperation

In this section, we analyze the server cooperation conditions from
three aspects: physical link, cooperation overhead, and complementary
load.

(1) Physical Link Communication Condition. Because edge server
collaboration to response tasks requires data transmission between
servers, there must exist a physical link to guarantee server commu-
nication. In a MEC system, BSs can communicate with each other
through the physical interface. The BSs are connected by physical links
to ensure data transmission and improve the efficiency of cooperation.
Therefore, one of the necessary conditions for collaboration between
edge servers is that there is an interface link between the BSs where the
servers are deployed nearby. As shown in Fig. 2, server 1 and server 2,
server 2 and server 3 have been connected by physical links, which
meet the conditions of cooperation. However, there is no physical
link communication between server 1 and server 3, so they cannot
cooperate.

(2) Collaboration Delay Condition. If there is a physical link be-
tween the servers, the task will be responded to collaboratively through

Computer Networks 257 (2025) 110932

data transmission or service migration, however, this will bring ad-
ditional communication costs and response delays. For delay-sensitive
tasks, the additional delay may reduce utility. Therefore, another coop-
erative communication condition is that the total response time from
submission to final execution time for a task must be less than its com-
puting deadline time. We define the collaboration delay condition using
Eq. (8), where set S denote the distance between the base stations,
B is the data transmission rate and the % is the data transmission
time. The ¢ is the task transfer time, so, the 2 =* (% + €) represents
additional communication time for task collaboration computing. The
actual computing time of tasks is # and the deadline completion time
of tasks is 7. The formulation shows that the distance S between BSs
is the most important factor affecting communication time, so the
collaborative delay condition also means that the server distance should
not be too long. Otherwise, it will cause too long response time, which
will not meet the real-time requirements of delay-sensitive tasks and
further affect their service quality.

2*(%+e)+0$r (8)

(3) Complementary Load Condition. A cycle is divided into N
stages, and the load of each stage of one region is different. At the same
stage, the server with a larger load cannot satisfy the deadline response
time of all tasks, which will reduce the system utility. However, the
servers with little load will have resources left. In order to increase the
system utility, the server with a larger load can transfer a part of the
load to the server with little load to collaborate computing. Due to the
data transmission and service migration that can cause additional time,
we set a necessary condition for collaborative computing between two
servers, which is that the two regions have at least two phases with
complementary loads in a cycle to cooperate. For example, we suppose
that a day is one cycle and it is divided into 6 stages, which means each
4 h is a stage. In Fig. 2, the load of region 1 during the 8 h-12 h period
is 100, and the load of region 2 is 20. During the 12 h-16 h, the load
of region 1 is 30 and the load of region 2 is 80. In this case, the region
1 and the region 2 are complementary to satisfy the two-stage load in
one cycle. The load of region 1 can be transferred to region 2 that has
less load during 8 h-12 h to avoid wasting the server resource of region
2.

4.2. The server cooperation algorithm

In this paper, we assume that each region can only collaborate with
one region at most, and we transform the server collaboration problem
into a graph matching problem. The servers in all regions are seen as
the nodes in the graph. If the regions can cooperate, the nodes in the
graph also have corresponding edge connections. In order to improve
the efficiency of collaboration, we hope that the number of collabo-
rative groups is the largest, that is, the number of graph connections
is the largest. So the server deployment problem is converted to the
maximum matching number of the graph, and the matching conditions
of the graph are the three necessary conditions given above. For the
typical maximum matching problem of bipartite graphs, the Hungarian
algorithm can be used [31]. However, this algorithm is not suitable for
the scenario shown in this paper, as the nodes of the region do not
have the bipartite nature and thus the graph is not equivalent to the
bipartite graph. Actually, the problem can be classified as the maximum
matching problem of general graphs and we thus solve it using the
blossom algorithm [32].

We combine the above three necessary conditions and adopt the
flowered tree algorithm to get the server collaboration algorithm,
which is shown in Algorithm 1. Among them, line 3 determines
whether the two regions are physically connected, and line 6 deter-
mines whether the distance S between the base stations meets the
cooperation delay condition. The third load complementary condition
is in line 6 of this algorithm, which determines whether there are



X. Liet al

Algorithm 1: Server Cooperation Algorithm (SCA)

Input: Information for all regions:

M: the number of regions in system; Us' = {6i, 6;,
average load set of N stages in the region i;

A;: Location coordinates of the region i is (x;, y;);
1<i< M.

Output: List of regions where servers can collaborate.
for each 1 <i <M do

2 foreach 1 < j < M do

,65\/ }:the

-

3 if i # j and A, isConnect A; then
4 S « \/(x,-—x/-)2+(y,-—yj)2;
5 W(—(T—0—2*e)*§;
6 if S < W then
7 if complementary(5', 5]) then
8 loc « getloc(4;, 4));
9 bloosom(A;, Aj, loc);
10 matchli] « j;

11 else

12 ‘ break;

13 end

14 else

15 ‘ break;

16 end

17 else

18 ‘ break;

19 end

20 end

21 end

at least two phases of load complementary in one cycle of the two
regions. Lines 8-10 utilize the flowering tree algorithm to calculate the
maximum matching number of the general graph and return the result
to ensure maximum collaboration and improve overall deployment
efficiency.

4.3. The cooperative response mode for tasks

From Egs. (3)-(5), we can find that the system utility is related
to the actual response time of the task. Therefore, we need to set a
cooperative response mode for tasks to calculate their actual response
time. The corresponding pattern of delay-sensitive tasks is different
from that of delay-tolerant tasks. At the same time, we combine the
remaining resources of servers and the server cooperation list obtained
by Algorithm 1, and then give different task collaboration response
modes according to the different delay characteristics of tasks. The
cooperative response mode for tasks includes:

(1) The system determines whether the local edge server of the
task has remaining computing resources. If so, the task will be
executed on the local server. Otherwise, perform (2).

(2) The system judges whether the server has a collaboration region
according to Algorithm 1. If it does not exist, go to step (3).
Otherwise, based on the task type and the load situation of
the collaborative region, the response mode on the collaborative
server is divided into the following three situations:

« The load of the collaboration server is less than ¢;, which
shows that the load of the collaboration server is very
little. Therefore, no matter what type of task, they can be
responded to on the collaborative server.

« The load of the collaboration server is higher than ¢, but
less than &,, which shows that the load of the collaboration

Computer Networks 257 (2025) 110932

. 3
y (utility) & ~ gd=0

e
->

1100
(600,1100)
1000

900 /

4
800 gl
/ /' (300,800)

/)

/
700 /
/

/

600 (200,600)
500
400
300

200
100 x (capacity)

0 100 200 300 400 500 600 700 800 900

Fig. 4. A simplified utility function.

server is higher. At this time, the collaborative server pri-
oritizes select delay-sensitive tasks to execution, but rejects
delay-tolerant tasks.

« The load of the collaboration server is higher than ¢,, which
means that the load of the collaboration server is very high.
In order to ensure the quality of service for delay-sensitive
tasks in its own region, the collaboration server will reject
all requests that will be transferred to the cloud (go to step

(3.

(3) The task is scheduled to the cloud center for execution.

5. Edge server deployment strategy in MEC system

Based on the system parameters and problem definitions in chapter
3, the conditions for server cooperation in Section 4.1, we propose
the server cooperation algorithm to adjust whether the servers can
cooperate in part 4.2, and give the cooperative response mode for
tasks in part 4.3. Next, we first introduce a non-cooperative server
deployment algorithm, named the Gradient algorithm. And then, we
propose a cooperation-based edge server deployment algorithm in the
MEC system.

5.1. The non-cooperative server deployment algorithm

For scenarios where servers cannot collaborate, we adopt the Gradi-
ent algorithm proposed in our previous work [30]. For a region k € M,
we assume that this region is allocated with 4, computing power, and
the loads in the N stages of this region are described as, 6,,6,,...,6y,
respectively. The system utility is related to the allocated computing
power and load, so we set the utility in a stage of a region as the
minimum of the computing power and the load. Furthermore, our goal
is to maximize the total utility of the system, that is, the sum utilities
in N stages of M regions, as shown in Eq. (9).

M M N
maxU = ) h(A) = Y, Y min(3;, 4) 9)
k=1 k=1 i=1

In order to understand the utility function more clearly, we use a
simple example for illustration. We simplify the scenario and divide
one cycle of a region into 3 stages (N = 3). Assume that the average
load of the three stages of the region in a cycle is 200, 300, and 600,



X. Liet al

A
Y(utility)

X(capacity)

region 1

A

Computer Networks 257 (2025) 110932

Y(utility)

e

I

: |

| | |

I
: : } : X(capacity)

o L I S

region 2

Fig. 5. The total utility of the system.

Algorithm 2: Gradient Algorithm

Input: Information for all regions and load:

M: the number of regions in system; Us' = {&],5), ..., 5}, }:the

average load set of N stages in the region i,1 <i < M,

€: the total computing resources; used Capicity: the allocated

computing resources, the initial setting is 0.

Output: UA = {4, 4,,..., 4y, }: the computing resources
allocated by M regions.

1 foreach1 <n< N do
2 foreach 1 <i< M do
3 if usedCapicity < 2 then
4 if 2; < 5! then
5 usedCapicity < usedCapicity + (8, — 4,);
6 A <805
7 else
8 ‘ continue;
9 end
10 i++;
11 else
12 ‘ break;
13 end
14 end
15 n++;
16 end

and the computing resources allocated in a region are x. Therefore, the
total utility of this region is:

h(Ay) = min(200, x) + min(300, x) + min(600, x) (10)

The expression of the utility function is shown in Fig. 4, which
shows that the utility function of a region is a segment function and
the value of the utility changes with the allocated computing resources.
This segment function is divided into four parts, which correspond
to the four different stages of load in one cycle of this region. As
the allocated computing resources increase, the value of the function
gradually increases. But when the allocated computing resources reach
a certain number, the total utility remains stable, which means that it
is useless to allocate more computing resources, and the utility reaches
the maximum value at this time. From Fig. 4, the gradient of each stage
can be obtained, assuming that they are respectively g;, g,, g3, and g,
and the values of these four gradients are sequentially reduced. When
the allocated computing resources are greater than the maximum load
of N stages in a cycle, the gradient is 0, and no more resources should
be allocated.

In this paper, the entire system contains M regions, and the total
utility of the entire system is the sum of the utility of all regions.
Therefore, the utility function of the entire system is shown in Fig. 5.

We use different colors to indicate the utility growth rate at each stage.
It can be seen from Fig. 5 that the [0,200] part is the fastest growing
part, and the [200,400], the [400,600], and the [600,800] parts grow
more and more slowly. Therefore, the Gradient algorithm prioritizes
allocating the computing resources to the [0,200] part, followed by the
other parts, which ensures that the system get more utilities.

Based on the above analysis, the main idea of the Gradient algorithm
proposed in this paper is based on the feature that the growth rate of
the utility function will be slower as the load increases, giving priority
to the region with little load. Because the region with little load is
more effective for the rapid growth of utility. The Gradient algorithm,
detailed in Algorithm 2, systematically allocates computing resources
across regions, selecting the optimal region iteratively until resources
are depleted, as outlined in lines 1-3. Analysis of Egs. (9)—(10) indicates
that if allocated resources fall below the current load, allocation contin-
ues; otherwise, no further resources are allocated, as detailed in lines
4-9. Specifically, if the allocated resources are insufficient, allocation
continues based on the load distribution, and the used resources are
updated accordingly, as detailed in lines 5-6.

5.2. Cooperation-based server deployment (CBSD) algorithm

The core idea of the cooperation-based server deployment (CBSD)
algorithm is task migration through collaborative servers to share load,
thereby reducing the number of edge servers deployed and improving
the utilization of computing resources. The CBSD algorithm merges the
two collaborative regions calculated by Algorithm 1 into one region,
which is a non-collaborative scenario, and uses the Gradient algorithm
as shown in Algorithm 2 to obtain the computing resources allocated to
the merged region. Then, the CBSD algorithm will continue to decide
the ratio of computing resources allocated to the collaborative regions
based on the load distribution, whose detailed process as shown in
Algorithm 3.

Step 1 Calculate the cooperation information (line 2) of the region
using the server cooperation algorithm (Algorithm 1).

Bind the collaboration region (lines 3-10). If the region A; and
A; satisfy the cooperation conditions, the cooperation region
marks A;; as shown in line 6, whose load is the sum of the
load of A; and A;, defined by &,/ in line 7.

Step 3 Allocate computing resources (lines 11-17). The cooperation
region obtained in Step 2 is regarded as an independent
region, whose resource allocation 4;; is calculated by Gradient
algorithm given in the following Section 5.1.

Re-allocate the collaborative region (lines 19-24). First, the

Step 2

Step 4
load ratio of sub-region A; is defined by %, where &/ is the
load of A, and the §7 is the total load of collaborative region

A;;. Then, allocate the total computing resources 4;; obtained
in Step 3 to A; based on load ratio.



X. Liet al

Algorithm 3: Cooperation-based Server Deployment (CBSD) Al-
gorithm

Input: Information for all regions and load:

M: the number of regions in system; Us’ = {5!, 6., ..., 5} }:the

average load set of N stages in the region i,1 <i < M;

€: the total computing resources; used Capicity: the allocated

computing resources, the initial setting is 0.

Output: UA = {4}, 4,, ..., 4y, }: the computing resources
allocated by M regions.

1 forn < N do
2 ServerCooperationAlgorithm();
3 for each A; € UA do
4 for each A; € uA do
5 if A; cooperation with A; then
6 Ay < A+ Ay
7 57 8+ 8l
8 end
9 end
10 end
11 for each A;; do
12 if usedCapicity < Q2 then
13 ‘ Aij = Gradient Algorithm();
14 else
15 ‘ break;
16 end
17 end
18 for each A; € UA do
19 if A; cooperation with A; then
20 A < %AU;
21 Aj < %Ai s
22 end
23 end
24 end

5.3. The complexity of the CBSD algorithm

In this section, we analyze the complexity of the CBSD Algorithm,
which includes four steps. The step 1 calculates the server cooperation,
whose complexity is O(M?). Next, in the step 2, the CBSD will bind the
collaboration region, it also has O(M?) complexity. Then step 3 uses the
Gradient algorithm to calculate the computing resources allocated to
the binding regions. In the optimal case, all regions cooperate with each
other, and the complexity of Gradient algorithm at a stage is O(M /2).
However, in the worst case, all regions cannot meet the cooperation
conditions with each other, the complexity of Gradient algorithm at
a stage is O(M). For the step 4, it achieves the computing resources
allocated to each regions, whose complexity is O(M). Therefore, for a
stage, the complexity of CBSD algorithm is O(2M? +2M) in the optimal
case, and the complexity in the worse case is O(2M? + 3/2M). Finally,
because a cycle is divided into N stages, the complexity of CBSD
algorithm is O(NM(2M + 2)) in the optimal case, and the complexity
in the worse case is O(NM(2M + 3/2)).

6. Evaluation

The experiment randomly generated several different tasks, each
with different completion time deadline, utilities, etc., and took the
number of requests in each region as the load, and the load of all
regions will change over time. The experimental parameter settings are
detailed in Table 2, which includes the utility loss coefficient « = 0.3
and the number of sub-regions M, set at values of 5, 10, and 15,

Computer Networks 257 (2025) 110932

Table 2
Parameter settings.
Symbol Description Value
a The utility loss coefficient 0.3
M The number of regions 5, 10, 15
N The number of stages 4
€ The non-collaboration load threshold 0.8
€ The collaboration upper threshold 0.9
€ The collaboration lower threshold 0.5
[ The initial total computing resources 100

respectively. The number of stages in a cycle is N = 4, which means
that a cycle of 24 h is divided into 4 stages, and 6 h is a stage. The
load threshold for edge servers e is set at 0.8, while the thresholds
for collaborative servers are initialized at ¢, = 0.9 and ¢, = 0.5,
respectively. The initial total computing resources is @ = 100 and
increase by 100 with each iteration.

Since the server deployment problem we studied is based on fixed
total computing resources and a set number of requests, the overall
system energy consumption is predetermined [33,34]. We should focus
on enhancing task response quality under the established conditions of
resources and load. So, we evaluate the algorithm performance from
three aspects: system utility, throughput, and robustness. In order to
evaluate the effectiveness of the proposed algorithm, we carry out a
large number of simulation experiments and compare the CBSD-GD we
proposed with the CBSD-WH and GRSD-GD algorithms. The specific
descriptions are as follows:

« CBSD-GD: The algorithm proposed in this paper combines the
Gradient algorithm (as detailed in Algorithm 2) and the
cooperation-based server deployment (CBSD) algorithm (as de-
tailed in Algorithm 3), which is used as the evaluation object.

CBSD-WH: This algorithm represents a combination of the CBSD
algorithm proposed in this article and the traditional Weight
algorithm. The Weight algorithm calculates the average workload
per cycle for each sub-region, sums these to establish the region’s
total workload, and then allocates computing capacity propor-
tionally based on each sub-region’s contribution to the total. The
experimental settings of the Weight algorithm can refer to the
paper [30].

GRSD-GD: The algorithm uses GRSD algorithm and Gradient algo-
rithm in server collaboration scenarios. Among them, the GRSD
algorithm adopts a greedy strategy when performing service col-
laboration. The greedy strategy collaborates whenever the server
has extra computing power, regardless of the task type.

6.1. The deployment utility analysis

In this paper, a large number of experiments are carried out, we first
evaluate the utility of our proposed CBSD-GD algorithm by comparing
it with CBSD-WH and GRSD-GD algorithms. The detailed definition
of system utility is provided in Egs. (3)-(6), located in Section 3.2.
In Fig. 6, we set different numbers of regions and analyze the changes
of system utility with the variation of allocated computing resources.
Fig. 6(a) compares the utility among the three algorithms when the
number of regions is M =5 in the system, where the x-axis represents
the total available computing resources in the system and the y-axis
represents the total utility of each algorithm under the current setting.
It can be seen from Fig. 6(a) that the utility of the CBSD-GD algorithm
is always greater than or equal to the other deployment algorithms
at various number of computing resources, which indicates that the
CBSD-GD algorithm has a good performance in the deployment of edge
servers. It is worth noting that when the allocated computing resource
are greater than 1000, the utility of the three deployment algorithms



X. Liet al

-+ CBSD-GD
20001 ... CBSD-WH T
—— GRSD-GD e > 2200

i 2400

2000

ity

1800

Util

16001 ¢
1400

1200

1000

100 200 300 400 500 600 700 800 900 1000
Computation Capacity

(a) the utility comparison M =5

tends to be the same. The main reason is the response time deadline
of all tasks can be satisfied when the allocated computing resources
are enough, and the system utility will become constant. Fig. 6(b)
shows the changing of system utility of the three algorithms when
the number of regions is M = 10. The general trend of the three
algorithms is that as the allocated computing resources increase, the
utility will gradually increase, and eventually the three will achieve
the same utility. But the CBSD-GD algorithm is always larger than the
other two algorithms. Fig. 6(c) shows the system utility of the three
algorithms when the number of regions is M = 15, where the changing
trend of utility is the same as in the previous two cases. In addition, the
utility of the algorithm CBSD-GD is always higher than that of GRSD-
GD, which shows that prioritizing delay-sensitive tasks can improve the

Computer Networks 257 (2025) 110932

,,,,,,, 2800 P

2600

2400

2z «
= 2200
=
b
2000
-+- CBSD-GD 1800 -+- CBSD-GD
CBSD-WH CBSD-WH
—— GRSD-GD 1600 —— GRSD-GD
300 400 500 600 700 800 900 1000 1100 1200 500 600 700 800 900 1000 1100 1200 1300 1400
Computation Capacity Computation Capacity
(b) the utility comparison M = 10 (c) the utility comparison M = 15
Fig. 6. The utility comparison.
6001 ---- CBSD-GD o g
[ < CBSD-WH oty
¥ 5001 —— GRSD-GD Lo
+— -
@
o 400
o)
@
— 300
o
—
(]
a8 200
2 100
0

overall quality of services during collaboration. Fig. 6 indicates that
under resource constraints, our algorithm improves utility by up to 35%
compared to other algorithms.

6.2. The edge-side throughput analysis

Traditional deployment algorithms mostly target task execution
delay, energy consumption, etc., and do not care about the utilization of
edge server computing resources. In this section, we execute many ex-
periments to verify the throughput performance of various algorithms
on the edge side. Throughput, defined as the total number of tasks
per time unit [35], is calculated using the formula (2’1’\!: | fo: 18T,
where T denotes the total time unit across N stages. In the MEC system,
greater throughput on the edge side means that the edge servers have
more powerful computing processing capabilities and higher computing
resource utilization. Because the computing resources of traditional
edge servers are relatively limited, it is very important for the MEC
system to improve the computing throughput on the edge side. Fig. 7
shows the total number of tasks successfully accepted by the three
deployment algorithms under the different computing resources. It can
be seen from Fig. 7 that the number of tasks accepted by the three algo-
rithms is almost the same when the system has few allocated resources,
which is because most tasks cannot be met in this situation. With
the increase of allocated computing resource, the CBSD-GD algorithm
has demonstrated its superiority. The number of tasks received by our
algorithm at the edge is always greater than or equal to the other
algorithms, which shows that the CBSD-GD we proposed has good edge
throughput performance. For computing power within the range of 250
to 750, our algorithm improves throughput by approximately 10%-—
25%. As computing resources continue to increase, the number of tasks
accepted by the three algorithms is eventually the same. This is because
too many computing resources are allocated, and the computing power
on the edge servers becomes so large that all tasks are received.

6.3. The robustness analysis of the algorithm

In addition to analyzing the reliability of the algorithm, this section
analyzes the robustness of the CBSD-GD algorithm we proposed, which

150 250 350 450 550 650 750 850
Computation Capacity

Fig. 7. The edge-side throughput.

is defined that when the average load changes within a certain range,
the load change will not affect the performance of the deployment
algorithm. That is to say, in the case of load changes, the algorithm
performance has good stability. Fig. 8 illustrates the robustness of the
three algorithms, with the x-axis representing system settings, including
the number of regions and allocated computing resources. The y-axis
shows the utility ratio, defined as the actual utility compared to the
maximum possible utility under specific settings. It can be seen from
Fig. 6 and Fig. 7 that the CBSD-GD algorithm can obtain the best utility
compared to the other algorithms, at the same time, the performance
also has good stability seen from Fig. 8. It can be found from Fig. 8 that
when the computing resource is 700, no matter whether the number
of regions is 5, 10, or 15, the actual utility of the CBSD-GD algorithm
we proposed is about 90% of the maximum utility that the system can
harvest in this setting. And if the computing resource is 800, the actual
utility of the algorithm is about 95% of the maximum utility. However,
the utility ratios for the CBSD-WH and GRSD-GD algorithms range from
approximately 70% to 80%. The performance of the proposed CBSD-
GD algorithm shows an improvement of about 10% to 20% over these
comparison algorithms. As the number of regions and the load changes,
the utility of the algorithm proposed in this paper are relatively stable,
which shows that the CBSD-GD algorithm has good robustness.

As shown in Figs. 6-8, under conditions of extremely insufficient
or extremely sufficient resources, the performance of the CBSD-GD
algorithm is comparable to that of the other algorithms. Therefore,
the algorithm proposed in this paper achieves optimal performance
under non-extreme resource conditions and is well-suited for realistic
scenarios with uneven load distribution and collaborative servers.

7. Conclusions

This article identifies the patterns of load variation and server col-
laboration characteristics, using complementary load collaborations for



X. Li et al.

1.2 1 B CBSD-GD
X3 CBSD-WH
10 ' ¥z GRSD-GD
K3 K K ] o i3
ool Bl B B B B B
= 087 K 2 KA B b 3
K] K KR KA B ]
> S K ] R K& K
Zosd KB KB X, K ] B
2064 KS X1 RS o Z B R4
S B B BE B B R
> S B B B K B
o] KR K K R KR K
SE K B B B KR
iy I Iy o s
02{ KB KB K K KR K
S KR B B B K

5-800
Number of Regions - Allocated Resources

10-700 10-800 15-700 15-800

Fig. 8. The robustness comparison.

service migration and load sharing to enhance resource utilization in
edge servers. First, we set the conditions for server collaboration from
three aspects: physical link, collaboration delay, and complementary
load. Then, we proposed the server cooperation algorithm and the
cooperative response mode for tasks based on the kind of tasks. Next,
we analyzed the rule of load variation and proposed a CBSD algorithm
that utilized the Gradient algorithm to allocate computing resources.
Finally, simulation experiments verified that the CBSD-GD algorithm
we proposed had good performance in three aspects: system efficiency,
throughput, and robustness. In the future work, we aim to implement
the algorithm in real-world scenarios, gather load data from base sta-
tions to improve experiments, and use machine learning to dynamically
adjust resource allocation, facilitating adaptive and intelligent server
deployment.

CRediT authorship contribution statement

Xin Li: Writing — review & editing, Supervision, Project admin-
istration, Conceptualization. Meiyan Teng: Writing — original draft.
Yanling Bu: Writing — review & editing. Jianjun Qiu: Methodology.
Xiaolin Qin: Writing — review & editing. Jie Wu: Writing — review &
editing.

Funding

This work was supported in part by the Collaborative Innovation
Center of Novel Software Technology and Industrialization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Y. Siriwardhana, P. Porambage, M. Liyanage, M. Ylianttila, A survey on mobile
augmented reality with 5G mobile edge computing: Architectures, applications,
and technical aspects, IEEE Commun. Surv. Tutor. 23 (2) (2021) 1160-1192.
C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, L. Guo, Computation offloading in
mobile edge computing networks: A survey, J. Netw. Comput. Appl. 202 (2022)
103366.

[2]

10

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Computer Networks 257 (2025) 110932

P. Cong, J. Zhou, L. Li, K. Cao, T. Wei, K. Li, A survey of hierarchical energy
optimization for mobile edge computing: A perspective from end devices to the
cloud, ACM Comput. Surv. 53 (2) (2020) 1-44.

Y. Yin, Z. Cao, Y. Xu, H. Gao, R. Li, Z. Mai, QoS prediction for service
recommendation with features learning in mobile edge computing environment,
IEEE Trans. Cogn. Commun. Netw. 6 (4) (2020) 1136-1145.

Y. Chen, D. Wang, N. Wu, Z. Xiang, Mobility-aware edge server placement for
mobile edge computing, Comput. Commun. (2023).

J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, W. Zhou, J. Zhao, Maximizing user service
satisfaction for delay-sensitive IoT applications in edge computing, IEEE Trans.
Parallel Distrib. Syst. 33 (5) (2022) 1199-1212.

W. Li, J. Chen, Y. Li, Z. Wen, J. Peng, X. Wu, Mobile edge server deployment
towards task offloading in mobile edge computing: A clustering approach, Mob.
Netw. Appl. 27 (4) (2022) 1476-1489.

H. Ye, B. Cao, J. Liu, P. Li, B. Tang, Z. Peng, An edge server deployment method
based on optimal benefit and genetic algorithm, J. Cloud Comput. 12 (1) (2023)
148.

M. Su, G. Wang, K.-K.R. Choo, et al., Prediction-based resource deployment and
task scheduling in edge-cloud collaborative computing, Wirel. Commun. Mob.
Comput. 2022 (2022).

X. Xu, Q. Huang, X. Yin, M. Abbasi, M.R. Khosravi, L. Qi, Intelligent offloading
for collaborative smart city services in edge computing, IEEE Internet Things J.
7 (9) (2020) 7919-7927.

W.-Z. Zhang, L.A. Elgendy, M. Hammad, A.M. Iliyasu, X. Du, M. Guizani, A.A. Abd
El-Latif, Secure and optimized load balancing for multitier IoT and edge-cloud
computing systems, IEEE Internet Things J. 8 (10) (2020) 8119-8132.

Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu, R.Y.
Kwok, Distributed and dynamic service placement in pervasive edge computing
networks, IEEE Trans. Parallel Distrib. Syst. 32 (6) (2020) 1277-1292.

A. Feng, H. Ge, Y. Wang, J. Wang, W. Li, K. Liu, Mobile edge computing
offloading strategy based on improved BP neural network, in: 2020 IEEE 5th
International Conference on Cloud Computing and Big Data Analytics, ICCCBDA,
IEEE, 2020, pp. 138-143.

S. Zhou, W. Jadoon, The partial computation offloading strategy based on game
theory for multi-user in mobile edge computing environment, Comput. Netw.
178 (2020) 107334.

M. Teng, X. Li, X. Qin, J. Wu, Priority based service placement strategy in het-
erogeneous mobile edge computing, in: International Conference on Algorithms
and Architectures for Parallel Processing, Springer, 2020, pp. 314-329.

R.A. Addad, D.L.C. Dutra, M. Bagaa, T. Taleb, H. Flinck, Fast service migration
in 5G trends and scenarios, IEEE Netw. 34 (2) (2020) 92-98.

I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E.C. Strinati, M.
Rossi, Mobility aware and dynamic migration of MEC services for the internet
of vehicles, IEEE Trans. Netw. Serv. Manag. 18 (1) (2021) 570-584.

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, A.Y. Zomaya, Edge intelligence:
The confluence of edge computing and artificial intelligence, IEEE Internet Things
J. 7 (8) (2020) 7457-7469.

Y. Liu, M. Peng, G. Shou, Y. Chen, S. Chen, Toward edge intelligence: Multiaccess
edge computing for 5G and Internet of Things, IEEE Internet Things J. 7 (8)
(2020) 6722-6747.

B. Li, P. Hou, H. Wu, F. Hou, Optimal edge server deployment and allocation
strategy in 5G ultra-dense networking environments, Pervasive Mob. Comput. 72
(2021) 101312.

Z. Ning, Y. Yang, X. Wang, L. Guo, X. Gao, S. Guo, G. Wang, Dynamic
computation offloading and server deployment for UAV-enabled multi-access
edge computing, IEEE Trans. Mob. Comput. (2021).

H. Li, Y. Liu, Z. Yang, F. Meng, D. Wang, Y. Nan, Maximizing network resource
utilization based server deployment algorithm in LTE-edge computing, in: 2020
IEEE 3rd International Conference on Computer and Communication Engineering
Technology, CCET, IEEE, 2020, pp. 244-248.

W. Du, H. Sun, H. Wang, X. Guo, B. Zou, Server deployment algorithm for
maximizing utilization of network resources under fog computing, in: Interna-
tional Conference on Computer Engineering and Networks, Springer, 2020, pp.
1466-1474.

B. Li, P. Hou, K. Wang, Z. Peng, S. Jin, L. Niu, Deployment of edge servers in 5G
cellular networks, Trans. Emerg. Telecommun. Technol. 33 (8) (2022) e3937.
T. Léhderanta, T. Leppéanen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila, J. Riekki,
M.J. Sillanpad, Edge computing server placement with capacitated location
allocation, J. Parallel Distrib. Comput. 153 (2021) 130-149.

B. Cao, S. Fan, J. Zhao, S. Tian, Z. Zheng, Y. Yan, P. Yang, Large-scale many-
objective deployment optimization of edge servers, IEEE Trans. Intell. Transp.
Syst. 22 (6) (2021) 3841-3849.


http://refhub.elsevier.com/S1389-1286(24)00764-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb10
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb13
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb14
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb15
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb16
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb26

X. Li et al.

[27] T.K. Rodrigues, K. Suto, N. Kato, Edge cloud server deployment with transmission

power control through machine learning for 6G internet of things, IEEE Trans.
Emerg. Top. Comput. 9 (4) (2021) 2099-2108, http://dx.doi.org/10.1109/TETC.
2019.2963091.

[28] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, L. Huang, Incremental server deployment

for scalable NFV-enabled networks, in: IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications, 2020, pp. 2361-2370, http://dx.doi.org/10.1109/
INFOCOM41043.2020.9155364.

[29] M.M. Sadeeq, N.M. Abdulkareem, S.R. Zeebaree, D.M. Ahmed, A.S. Sami, R.R.

Zebari, 10T and Cloud computing issues, challenges and opportunities: A review,
Qubahan Acad. J. 1 (2) (2021) 1-7.

[30] J. Qiu, X. Li, X. Qin, H. Wang, Y. Cheng, Utility-aware edge server deployment

in mobile edge computing, in: Algorithms and Architectures for Parallel Pro-
cessing: 19th International Conference, ICA3PP 2019, Melbourne, VIC, Australia,
December 9-11, 2019, Proceedings, Part I 19, Springer, 2020, pp. 359-372.

[31] A.Q. Abduljaleel, et al., Reviewer assignment using weighted matching and

hungarian algorithm, Turk. J. Comput. Math. Educ. (TURCOMAT) 12 (7) (2021)
619-627.

[32] A.F. Ocampo, M.-R. Fida, J.F. Botero, A. Elmokashfi, H. Bryhni, Opportunistic

CPU sharing in mobile edge computing deploying the cloud-RAN, IEEE Trans.
Netw. Serv. Manag. (2023).

[33] H. Rezaie, M. Golsorkhtabaramiri, A shared channel access protocol with energy

saving in hybrid radio-frequency identification networks and wireless sensor
networks for use in the internet of things platform, IET Radar Sonar Navig.
17 (11) (2023) 1654-1663.

[34] M. Teng, X. Li, K. Zhu, Joint optimization of sequential task offloading and

service deployment in end-edge-cloud system for energy efficiency, IEEE Trans.
Sustain. Comput. 9 (3) (2024) 283-298.

[35] H. Rezaie, M. Golsorkhtabaramiri, A fair reader collision avoidance protocol for

RFID dense reader environments, Wirel. Netw. 24 (6) (2018) 1953-1964.

Xin Li received the B.S. and Ph.D degrees from Nanjing
University in 2008 and 2014, respectively. Currently, he is
an associate professor in the College of Computer Science
and Technology, Nanjing University of Aeronautics and As-
tronautics. His research interests include cloud computing,
edge computing, and distributed computing.

Meiyan Teng received the B.S. degree from Nanjing Uni-
versity of Information Science & Technology in 2018. She
received the M.S. degree from Nanjing University of Aero-
nautics and Astronautics (NUAA). At present, she is a Ph.D.
student at the College of Computer Science and Technology,
NUAA. Her research interests include edge computing and
edge intelligence.

11

)
?)

-t

Computer Networks 257 (2025) 110932

Yanling Bu received her Ph.D. degree in computer science
from Nanjing University, China in 2022. She is currently an
associate researcher with the College of Computer Science
and Technology, Nanjing University of Aeronautics and
Astronautics, China. Her research interests include Internet
of Things (IoT), mobile sensing, and RFID systems.

Jianjun Qiu received the B.S degree in Anhui University of
Agriculture (AHAU) in 2018 and M.S degree from Nanjing
University of Aeronautics and Astronautics (NUAA) in 2021.
He used to be a software engineer at NetEase and is now
a software engineer at ByteDance. He is interested in Cloud
Native, Could Computing and Edge Computing.

Xiaolin Qin is a professor in the College of Computer Sci-
ence and Technology at Nanjing University of Aeronautics
and Astronautics. His research interests include cloud data
management and knowledge discovery.

Jie Wu is the director of the Center for Networked Comput-
ing and Laura H. Carnell professor at Temple University. He
also serves as the director of International Affairs at College
of Science and Technology. His current research interests
include mobile computing and wireless networks, routing
protocols, cloud and green computing, network trust and
security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE
Transactions on Mobile Computing, IEEE Transactions on
Service Computing, Journal of Parallel and Distributed Com-
puting, and Journal of Computer Science and Technology.
He is an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is a
fellow of the AAAS and a fellow of the IEEE. He is the
recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.


http://dx.doi.org/10.1109/TETC.2019.2963091
http://dx.doi.org/10.1109/TETC.2019.2963091
http://dx.doi.org/10.1109/TETC.2019.2963091
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155364
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155364
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155364
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00764-3/sb35

	Cooperation-based server deployment strategy in mobile edge computing system
	Introduction
	Related Works
	System Model and Problem Formulation
	The System Model
	System Parameters
	The Problem Formulation and Analysis

	The Server Cooperative Mode
	The Conditions for Server Cooperation
	The Server Cooperation Algorithm
	The Cooperative Response Mode for Tasks

	Edge Server Deployment Strategy in MEC system
	The Non-cooperative Server Deployment Algorithm
	Cooperation-based Server Deployment (CBSD) Algorithm
	The Complexity of the CBSD Algorithm

	Evaluation
	The Deployment Utility Analysis
	The Edge-side Throughput Analysis
	The Robustness Analysis of the Algorithm

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


